Cela fait pas mal de temps que j’utilise Pandas. Dans cet article je vais essayer de réunir et synthétiser tous les tips & tricks à savoir (comme si j’utilisais Jupyter Notebook).

Voici la liste des tips:

  • Introduction à Pandas
  • Lire des données tabulaires
  • Sélectionner une série Pandas
  • Parenthèses Pandas
  • Renommer des colonnes
  • Effacer une colonne
  • Effacer toutes les colonnes sauf
  • Trier
  • Filtrer
  • Filtres multi-critères
  • Examiner un dataset
  • Numéro, index et contenu de la ligne lors d’une itération

Introduction à Pandas

C’est une librairie opensource d’analyse de données qui fourni des structures de données ainsi que des outils d’analyse faciles à utiliser.

Ses avantages sont:

  • Un grand nombre de fonctionnalités
  • Une communauté active
  • Documentation bien faite
  • S’associe bien avec d’autres packages connus
    • construit au-dessus de Numpy
    • s’utilise facilement avec Scikit-learn

Lien vers la documentation officielle: http://pandas.pydata.org/


Lire des données tabulaires

Lire des fichiers de données tabulaires dans Pandas


Example de fichiers de données:

  • CSV
  • Excel
  • Table-like data format
# import pandas
import pandas as pd
# reading a well-formatted .tsv file
url = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/chipotle.tsv'
orders = pd.read_table(url)
orders.head()

image


Fonctionnement par default de read_table:

  • Le fichier à charger doit contenir des tabs entre les colonnes
  • Présence d’un header
url2 = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/u.user'
users = pd.read_table(url2)
users.head()

image


Problème:

  • Le sepérateur entre les colonnes est le caractère "|". Il faut donc le spécifier à Pandas avec le paramètre sep=
  • Il n’y a pas de header. Il faut donc le spécifier en passant le paramètre header=None. On peut aussi ajouter une ligne pour les noms des colonnes en utilisant le paramètre names=user_cols
user_cols = ['user_id', 'age', 'gender', 'occupation', 'zip_code']
users = pd.read_table(url2, sep='|', header=None, names=user_cols)
users.head()

image


Note:

Si vous avez un fichier contenant du texte en haut ou en bas vous pouvez utiliser les paramètres suivants: skiprows=None ou skipfooter=None.

Lien vers la documentation de read_table: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_table.html


Sélectionner une série Pandas

Sélectionner une série Pandas à partir d’un dataframe


Qu’est-ce qu’une série ?

  • c’est un vecteur m x 1
    • m est le nombre de lignes
    • 1 le nombre de colonne
  • Chaque colonne d’un dataframe Pandas est une série
import pandas as pd
# The csv file is separated by commas
url = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/ufo.csv'

# method 1: read_table
ufo = pd.read_table(url, sep=',')

# method 2: read_csv
# this is a short-cut here using read_csv because it uses comma as the default separator
ufo = pd.read_csv(url)
ufo.head()

image

# Method 1: Selecting City series (this will always work)
ufo['City']

# Method 2: Selecting City series
ufo.City

# 'City' is case-sensitive, you cannot use 'city'

Jupyter Output:

0                      Ithaca
1                 Willingboro
2                     Holyoke
3                     Abilene
4        New York Worlds Fair
5                 Valley City
6                 Crater Lake
7                        Alma
8                     Eklutna
9                     Hubbard
10                    Fontana
11                   Waterloo
12                     Belton
13                     Keokuk
14                  Ludington
15                Forest Home
16                Los Angeles
17                  Hapeville
18                     Oneida
19                 Bering Sea
20                   Nebraska
21                        NaN
22                        NaN
23                  Owensboro
24                 Wilderness
25                  San Diego
26                 Wilderness
27                     Clovis
28                 Los Alamos
29               Ft. Duschene
                 ...         
18211                 Holyoke
18212                  Carson
18213                Pasadena
18214                  Austin
18215                El Campo
18216            Garden Grove
18217           Berthoud Pass
18218              Sisterdale
18219            Garden Grove
18220             Shasta Lake
18221                Franklin
18222          Albrightsville
18223              Greenville
18224                 Eufaula
18225             Simi Valley
18226           San Francisco
18227           San Francisco
18228              Kingsville
18229                 Chicago
18230             Pismo Beach
18231             Pismo Beach
18232                    Lodi
18233               Anchorage
18234                Capitola
18235          Fountain Hills
18236              Grant Park
18237             Spirit Lake
18238             Eagle River
18239             Eagle River
18240                    Ybor
Name: City, dtype: object
# confirm type
type(ufo['City'])
type(ufo.City)

Jupyter Output:

pandas.core.series.Series

Comment sélectionner une colonne qui contient des espaces ?

  • Il n’est pas possible d’utiliser la méthode 2 ufo.category_name
  • Il faut utiliser la méthode 1 ufo['category name']
ufo['Colors Reported']

Jupyter Output:

0           NaN
1           NaN
2           NaN
3           NaN
4           NaN
5           NaN
6           NaN
7           NaN
8           NaN
9           NaN
10          NaN
11          NaN
12          RED
13          NaN
14          NaN
15          NaN
16          NaN
17          NaN
18          NaN
19          RED
20          NaN
21          NaN
22          NaN
23          NaN
24          NaN
25          NaN
26          NaN
27          NaN
28          NaN
29          NaN
          ...  
18211       NaN
18212       NaN
18213     GREEN
18214       NaN
18215       NaN
18216    ORANGE
18217       NaN
18218       NaN
18219       NaN
18220      BLUE
18221       NaN
18222       NaN
18223       NaN
18224       NaN
18225       NaN
18226       NaN
18227       NaN
18228       NaN
18229       NaN
18230       NaN
18231       NaN
18232       NaN
18233       RED
18234       NaN
18235       NaN
18236       NaN
18237       NaN
18238       NaN
18239       RED
18240       NaN
Name: Colors Reported, dtype: object

Comment créer une nouvelle série Pandas dans un dataframe ?

# example of concatenating strings
'ab' + 'cd'
# created a new column called "Location" with a concatenation of "City" and "State"
ufo['Location'] = ufo.City + ', ' + ufo.State
ufo.head()

image


Parenthèses Pandas

Commandes Pandas finissant par des parenthèses

import pandas as pd
url = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/imdb_1000.csv'
movies = pd.read_csv(url)
# Looking at the first 5 rows of the DataFrame
movies.head()

image

# This will show descriptive statistics of numeric columns
movies.describe()

image

movies.describe(include=['float64'])

image

# Finding out dimensionality of DataFrame
movies.shape

Jupyter Output:

(979, 6)
# Finding out data types of each columns
movies.dtypes

Jupyter Output:

star_rating       float64
title              object
content_rating     object
genre              object
duration            int64
actors_list        object
dtype: object
type(movies)

Jupyter Output:

pandas.core.frame.DataFrame

Les dataframes ont certains attributs et méthodes

  • Méthodes: avec parenthèses

    • Orientées action:

      • movies.head()
      • movies.describe()
    • Les parenthèses autorisent les arguments optionnels

      • movies.describe(include='object')
  • Attributs: sans parenthèse

    • Orientés description:
      • movie.shape - movie.dtypes

Renommer des colonnes

import pandas as pd
url = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/ufo.csv'
ufo = pd.read_csv(url)
ufo.head()

image

# To check out only the columns
# It will output a list of columns
ufo.columns

Jupyter Output:

Index(['City', 'Colors Reported', 'Shape Reported', 'State', 'Time'], dtype='object')

Méthode 1: Renommer une seule colonne:

# inplace=True to affect DataFrame
ufo.rename(columns = {'Colors Reported': 'Colors_Reported', 'Shape Reported': 'Shape_Reported'}, inplace=True)
ufo.columns

Jupyter Output:

Index(['City', 'Colors_Reported', 'Shape_Reported', 'State', 'Time'], dtype='object')

Méthode 2: renommer plusieurs colonnes:

ufo_cols = ['city', 'colors reported', 'shape reported', 'state', 'time']
ufo.columns = ufo_cols
ufo.head()

image


Méthode 3: Changer les colonnes pendant la lecture:

url = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/ufo.csv'
ufo = pd.read_csv(url, names=ufo_cols, header=0)
ufo.head()

image


Méthode 4: replacer les espaces avec des underscores pour toutes les colonnes:

ufo.columns = ufo.columns.str.replace(' ', '_')
ufo.head()

image


Effacer une colonne

import pandas as pd
# Creating pandas DataFrame
url = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/ufo.csv'
ufo = pd.read_csv(url)
ufo.head()

image

ufo.shape

Jupyter Output:

(18241, 5)
# Removing column
# axis=0 row axis
# axis=1 column axis
# inplace=True to effect change
ufo.drop('Colors Reported', axis=1, inplace=True)
ufo.head()

image

# Removing column
list_drop = ['City', 'State']
ufo.drop(list_drop, axis=1, inplace=True)
ufo.head()

image

# Removing rows 0 and 1
# axis=0 is the default, so technically, you can leave this out
rows = [0, 1]
ufo.drop(rows, axis=0, inplace=True)
ufo.head()

image


Effacer toutes les colonnes sauf certaine

# df d'origine
a  b  c  d  e  f  g  
1  2  3  4  5  6  7
4  3  7  1  6  9  4
8  9  0  2  4  2  1

# df attendu
a  b
1  2
4  3
8  9

df = df[['a','b']]

Trier

import pandas as pd
url = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/imdb_1000.csv'
movies = pd.read_csv(url)
movies.head()

image

# sort using sort_values
# sort with numbers first then alphabetical order
movies.title.sort_values()

# alternative sorting
movies['title'].sort_values()

Jupyter Output:

542                   (500) Days of Summer
5                             12 Angry Men
201                       12 Years a Slave
698                              127 Hours
110                  2001: A Space Odyssey
910                                   2046
596                               21 Grams
624                              25th Hour
708                       28 Days Later...
60                                3 Idiots
225                                 3-Iron
570                                    300
555                           3:10 to Yuma
427           4 Months, 3 Weeks and 2 Days
824                                     42
597                                  50/50
203                                  8 1/2
170                       A Beautiful Mind
941                       A Bridge Too Far
571                           A Bronx Tale
266                      A Christmas Story
86                      A Clockwork Orange
716                         A Few Good Men
750                    A Fish Called Wanda
276                   A Fistful of Dollars
612                     A Hard Day's Night
883                  A History of Violence
869              A Nightmare on Elm Street
865                        A Perfect World
426                              A Prophet
                      ...                 
207       What Ever Happened to Baby Jane?
562            What's Eating Gilbert Grape
719                When Harry Met Sally...
649                      Where Eagles Dare
33                                Whiplash
669                Who Framed Roger Rabbit
219        Who's Afraid of Virginia Woolf?
127                      Wild Strawberries
497    Willy Wonka & the Chocolate Factory
270                        Wings of Desire
483                           Withnail & I
920                                Witness
65             Witness for the Prosecution
970                            Wonder Boys
518                         Wreck-It Ralph
954                                  X-Men
248             X-Men: Days of Future Past
532                     X-Men: First Class
871                                     X2
695                      Y Tu Mama Tambien
403                             Ying xiong
235                                Yip Man
96                                 Yojimbo
280                     Young Frankenstein
535                                  Zelig
955                       Zero Dark Thirty
677                                 Zodiac
615                             Zombieland
526                                   Zulu
864                                  [Rec]
Name: title, dtype: object
# returns a series
type(movies['title'].sort_values())

Jupyter Output:

pandas.core.series.Series

Tirer une colonne:

# sort in ascending=False
# this does not affect the underlying data
movies.title.sort_values(ascending=False)

Jupyter Output:

864                                  [Rec]
526                                   Zulu
615                             Zombieland
677                                 Zodiac
955                       Zero Dark Thirty
535                                  Zelig
280                     Young Frankenstein
96                                 Yojimbo
235                                Yip Man
403                             Ying xiong
695                      Y Tu Mama Tambien
871                                     X2
532                     X-Men: First Class
248             X-Men: Days of Future Past
954                                  X-Men
518                         Wreck-It Ralph
970                            Wonder Boys
65             Witness for the Prosecution
920                                Witness
483                           Withnail & I
270                        Wings of Desire
497    Willy Wonka & the Chocolate Factory
127                      Wild Strawberries
219        Who's Afraid of Virginia Woolf?
669                Who Framed Roger Rabbit
33                                Whiplash
649                      Where Eagles Dare
719                When Harry Met Sally...
562            What's Eating Gilbert Grape
207       What Ever Happened to Baby Jane?
                      ...                 
426                              A Prophet
865                        A Perfect World
869              A Nightmare on Elm Street
883                  A History of Violence
612                     A Hard Day's Night
276                   A Fistful of Dollars
750                    A Fish Called Wanda
716                         A Few Good Men
86                      A Clockwork Orange
266                      A Christmas Story
571                           A Bronx Tale
941                       A Bridge Too Far
170                       A Beautiful Mind
203                                  8 1/2
597                                  50/50
824                                     42
427           4 Months, 3 Weeks and 2 Days
555                           3:10 to Yuma
570                                    300
225                                 3-Iron
60                                3 Idiots
708                       28 Days Later...
624                              25th Hour
596                               21 Grams
910                                   2046
110                  2001: A Space Odyssey
698                              127 Hours
201                       12 Years a Slave
5                             12 Angry Men
542                   (500) Days of Summer
Name: title, dtype: object

Trieer un DataFrame en utilisant une colonne particulière:

movies.sort_values('title')

image

movies.sort_values('duration', ascending=False)

image


Trier un DataFrame en utilisant plusieurs colonnes:

# create list of columns
# sort using content_rating
# then within content_rating, sort by duration
columns = ['content_rating', 'duration']

# sort column
movies.sort_values(columns)

image


Filtrer

Filtrer les lignes d’un dataframe Pandas par rapport aux valeurs d’une colonne

import pandas as pd
# url

url = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/imdb_1000.csv'

# create DataFrame called movies
movies = pd.read_csv(url)
movies.head()

image

movies.shape

Jupyter Output:

(979, 6)
# booleans
type(True)
type(False)

Jupyter Output:

bool

On veut créer une liste de boolean avec le même nombre de lignes que le dataframe movies

  • Le boolean vaudra true si la duration > 200
  • false dans le cas contraire
# create list
booleans = []

# loop
for length in movies.duration:
    if length >= 200:
        booleans.append(True)
    else:
        booleans.append(False)
booleans[0:5]

Jupyter Output:

[False, False, True, False, False]
# len(booleans) is the same as the number of rows in movies' DataFrame
len(booleans)

Jupyter Output:

979
# convert booleans into a Pandas series
is_long = pd.Series(booleans)
is_long.head()

Jupyter Output:

0    False
1    False
2     True
3    False
4    False
dtype: bool
# pulls out genre
movies['genre']

Jupyter Output:

0          Crime
1          Crime
2          Crime
3         Action
4          Crime
5          Drama
6        Western
7      Adventure
8      Biography
9          Drama
10     Adventure
11        Action
12        Action
13         Drama
14     Adventure
15     Adventure
16         Drama
17         Drama
18     Biography
19        Action
20        Action
21         Crime
22         Drama
23         Crime
24         Drama
25        Comedy
26       Western
27         Drama
28         Crime
29        Comedy
         ...    
949       Comedy
950        Crime
951        Drama
952       Comedy
953    Adventure
954       Action
955        Drama
956       Comedy
957       Comedy
958        Drama
959       Comedy
960       Comedy
961    Biography
962       Comedy
963       Action
964    Biography
965      Mystery
966    Animation
967       Action
968        Drama
969        Crime
970        Drama
971       Comedy
972        Drama
973        Drama
974       Comedy
975    Adventure
976       Action
977       Horror
978        Crime
Name: genre, dtype: object
# this pulls out duration >= 200mins
movies[is_long]

image


Méthode plus rapide sans for loop:

# this line of code replaces the for loop
# when you use a series name using pandas and use a comparison operator, it will loop through each row
is_long = movies.duration >= 200
is_long.head()

Jupyter Output:

0    False
1    False
2     True
3    False
4    False
Name: duration, dtype: bool
movies[is_long]

image


Méthode encore meilleure pour simplifier movies[is_long]:

movies[movies.duration >= 200]

image


Conseil additionnel: on veut étudier la duration et seulement le genre au lieu de toutes les colonnes

# this is a DataFrame, we use dot or bracket notation to get what we want
movies[movies.duration >= 200]['genre']
movies[movies.duration >= 200].genre

Jupyter Output:

2          Crime
7      Adventure
17         Drama
78         Crime
85     Adventure
142    Adventure
157        Drama
204    Adventure
445    Adventure
476        Drama
630    Biography
767       Action
Name: genre, dtype: object
# best practice is to use .loc instead of what we did above by selecting columns
movies.loc[movies.duration >= 200, 'genre']

Jupyter Output:

2          Crime
7      Adventure
17         Drama
78         Crime
85     Adventure
142    Adventure
157        Drama
204    Adventure
445    Adventure
476        Drama
630    Biography
767       Action
Name: genre, dtype: object

Filtres multi-critères

Appliquer des filtres multi-critères sur un dataframe Pandas

import pandas as pd
url = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/imdb_1000.csv'

# Create movies DataFrame
movies = pd.read_csv(url)
movies.head()

image

movies[movies.duration >= 200]

image

2 conditions

  • duration > 200
  • Seulement genre Drama
True or False
Output: True

True or True
Output: True

False or False
Output: False

True and True
Output: True

True and False
Output: False
# when you wrap conditions in parantheses, you give order
# you do those in brackets first before 'and'
# AND
movies[(movies.duration >= 200) & (movies.genre == 'Drama')]

image

# OR 
movies[(movies.duration >= 200) | (movies.genre == 'Drama')]

image

(movies.duration >= 200) | (movies.genre == 'Drama')

Jupyter Output:

0      False
1      False
2       True
3      False
4      False
5       True
6      False
7       True
8      False
9       True
10     False
11     False
12     False
13      True
14     False
15     False
16      True
17      True
18     False
19     False
20     False
21     False
22      True
23     False
24      True
25     False
26     False
27      True
28     False
29     False
       ...  
949    False
950    False
951     True
952    False
953    False
954    False
955     True
956    False
957    False
958     True
959    False
960    False
961    False
962    False
963    False
964    False
965    False
966    False
967    False
968     True
969    False
970     True
971    False
972     True
973     True
974    False
975    False
976    False
977    False
978    False
dtype: bool
(movies.duration >= 200) & (movies.genre == 'Drama')

Jupyter Output:

0      False
1      False
2      False
3      False
4      False
5      False
6      False
7      False
8      False
9      False
10     False
11     False
12     False
13     False
14     False
15     False
16     False
17      True
18     False
19     False
20     False
21     False
22     False
23     False
24     False
25     False
26     False
27     False
28     False
29     False
       ...  
949    False
950    False
951    False
952    False
953    False
954    False
955    False
956    False
957    False
958    False
959    False
960    False
961    False
962    False
963    False
964    False
965    False
966    False
967    False
968    False
969    False
970    False
971    False
972    False
973    False
974    False
975    False
976    False
977    False
978    False
dtype: bool

Et si on veut les genres crime, drama, et action?

# slow method
movies[(movies.genre == 'Crime') | (movies.genre == 'Drama') | (movies.genre == 'Action')]

image

# fast method
filter_list = ['Crime', 'Drama', 'Action']
movies[movies.genre.isin(filter_list)]

image


Examiner un dataset

Lire un sous-ensemble de colonnes ou lignes

import pandas as pd
link = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/ufo.csv'
ufo = pd.read_csv(link)
ufo.columns

Jupyter Output:

Index(['City', 'Colors Reported', 'Shape Reported', 'State', 'Time'], dtype='object')
# reference using String
cols = ['City', 'State']

ufo = pd.read_csv(link, usecols=cols)
ufo.head()

image

# reference using position (Integer)
cols2 = [0, 4]

ufo = pd.read_csv(link, usecols=cols2)
ufo.head()

image

# if you only want certain number of rows
ufo = pd.read_csv(link, nrows=3)
ufo

image

Itérer dans une série et un dataframe

# intuitive method
for c in ufo.City:
    print(c)

Jupyter Output:

Ithaca
Willingboro
Holyoke
# pandas method
# you can grab index and row
for index, row in ufo.iterrows():
    print(index, row.City, row.State)

Jupyter Output:

0 Ithaca NY
1 Willingboro NJ
2 Holyoke CO

Retirer les colonnes non-numeriques d’un DataFrame

link = 'https://raw.githubusercontent.com/justmarkham/pandas-videos/master/data/drinks.csv'
drinks = pd.read_csv(link)
# you have 2 non-numeric columns
drinks.dtypes

Jupyter Output:

country                          object
beer_servings                     int64
spirit_servings                   int64
wine_servings                     int64
total_litres_of_pure_alcohol    float64
continent                        object
dtype: object
import numpy as np
drinks.select_dtypes(include=[np.number]).dtypes

Jupyter Output:

beer_servings                     int64
spirit_servings                   int64
wine_servings                     int64
total_litres_of_pure_alcohol    float64
dtype: object

Numéro, index et contenu de la ligne lors d’une itération

Pour obtenir le numéro, l’index et le contenu de la ligne lors d’une itération on peut utiliser le code suivant:

for line_number, (idx, row) in enumerate(df.iterrows()):
	...