What is the key features important on
booking a car?
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Context

e To take a quick look at data

e Feature extraction over original data (Feature Engineering)

* To explore relation between features in data

* To apply data cleansing

* To pick reasonable ML algorithm

* To pick reasonable sampling tech. to overcome skewness data



To take a quick look at data

* The data you submitted consists of 25 different features.
e The features are taking nominal, continuous values.

* Only a few of them are exposed with their names, below.
* v1-->unique queryid
* v2 -->unique vehicle id per query
e v3-->query date
* V6 --> price of car
* v22 -->rental duration
e v23 -->pickup date
* v25 -->target (booked or not booked)

e The label feature is taking two diffrent values (0 or 1). The ratios of Os and 1s have skewness. It means that dataset is
imbalanced data.

* |t has 1108765 instances. 35846 instances has NA value feature.



Feature extraction over original data (Feature
Engineering)

A few new feature were created over the feature v3. Year is ignored since it has taking only one
value (ex: 2017)

 v3_day part, v3_day, v3_week, v3_dayofweek , v3_dayofyear
e v3_day part is taking four different values, such as early morning, morning, afternoon, and
evening respectively according to hour and min value of query time.

A few new feature were created over the feature v3. Time and year were ignored since the both of
them have only one value (ex: 00:00:00, 2017)

* v23_day, v23_week, v23_dayofweek, v23_dayofyear, v23_month
Taking difference of timestamps [pickup_date (v23) - query_date (v3) ]. The difference is based on
day.

e diff v23_v3



Feature extraction over original data (Feature
Engineering)

If diff v23 v3is positive and booked status (v25) is 1, it can be called as a new feature,
* regular_booked

If diff v23 v3is positive and booked status (v25) is 0, it can be called as a new feature,
* regular_not_booked

There are another two different possible cases about queries according to time difference
* revisit ad after booking : revisited_booked_ad
e querying expired ad : queried_expired_ad

* Please, note that, the last possible situation is not normal case if we have a robust system, so the querying
expired ad is more reasonable explanation.

* After feature extraction, we have 40 features including the original dataset.
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Exposing Customer Tendency in Querying and
Booking a Car According to feature v3 day part
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v3_day_part v3_day part v3_day part

Customers mostly are booking a car in afternoon. It is roughly 45% of all booked car as we see in regular_booked graph.
Customers rarely are booking a car in early morning. It is less 2% of all booked car as we see in regular_booked graph.
Customers mostly are preferring high average rental duration when they are booking in early morning as we see in v22
graph even though the number of average booking is the lowest in the early morning.

Customers mostly are paying more average money when they are booking in early morning as we see in v6 graph because
they prefers long rental duration instead of short rental when they book a car in early morning.

They prefer mostly moderate price and rental duration when they book a car in afternoon.
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Exposing Customer Tendency in Querying and
Booking a Car According to feature v3 week
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Customers never don't book any car after week 5th up to week 52nd.

The number of booking is going down up to week 52nd.

The most average booking is done in week 3rd by customers.

The highest average rental duration is being preferring in week 52th when they book a car.

The average prices they prefer are moderate each week except for between 6-51 weeks.

Although the most lowest booking car is being done in week 52th by customers, they also are preferring long rental

duration.
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Exposing Customer Booking Preferences Over
Booked Car According to feature v23 _month
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The number of average booked car monthly is going down up to December as we see in regular_booked graph.
However, There is no booked car in November.

The highest number of average booked car with low average price and moderate average rental duration is being done in
February by customer.

The lowest number of average booked car with moderate average price and high average rental duration is being done in
December by customer. Probably, customers may have new-year and Christmas vacation so they prefer a long rental
duration.

The average price of car and rental duration are mostly high around summer time between May and October although the

number of average booked car is going down. Probably, customers may have a vacation in summer so they prefer a long
rental duration to short one.
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Exposing Customer Booking Preferences Over
Booked Car According to feature v23 week
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In weekly plot, we can see more details about customers' preferences.

However, There is no booked car in week 44th-47th, 49th-50th and week 52th.

The highest number of average booked car with low average price and moderate average rental duration is being done in
week 6th (February 6, 2017 February 12, 2017) by customer.

The lowest number of average booked car with moderate average price and high average rental duration is being done in
week 51st (December 18, 2017 - December 24, 2017) by customer. Probably, customers may have new-year and Christmas
vacation so they prefer a long rental duration.

To explain that preferences well, We need to take look at a few next week after week 51st.

=

regular_booked (sum %)
=
V22 (mean %)
[=]
[=
o

=
=
w



CDF

Exposing Customer Booking Preferences by
Using CDF over dlff v23 v3,v6, v22

Customers mostly are booking a car in prior to roughly 240 days and early. It means that 95%
of the booked car were booked in prior to roughly 240 days and before. P(D <=240 days) =
0.95
r *  Or, 95% of the booked car were booked in prior to roughly at least 5 and lately. P(D >=5 days)
~=0.95
— ==« P(D>=5days and D <=240 days) ~= 0.90
co o T e Median days costumer preferred is P(D <= 85 days) ~= 0.5
* We assumed that the unit of money is EUR.
/ *  Customers mostly are booking a car which is cheaper than 690 EUR. It means that 95% of the
/ price of booked car is cheaper than 960 EUR. P(v6 <= 690 EUR) ~=0.95
*  Or, 95% of the price of booked car is more expensive than 175 EUR. P(v6 >= 175 EUR) ~= 0.95
— * P(v6>=175EUR and v6 <= 690 EUR) ~=0.90
—wlw ¢ Median price of car costumer preferred is P(v6 <= 280 EUR) ~= 0.5
..._",.......---- . * We assumed that the unit of rental duration is day.
..-I * Customers mostly are booking a car whose rental duration is less than 23 days. It means that
IlI 95% of the rental duration of booked car is less than 23days. P(v22 <= 23 days) ~= 0.95
w * Or, 95% of the rental duration of booked car is higher than 3 days. P(v22 >=3) ~=0.95
i — * P(v22 >=3 days and v22 <= 23 days) ~= 0.90
l|| = mH * Median price of car costumer preferred is P(v22 <= 6 days) ~=0.5




Box plotting Time Difference, Price, Rental

Duration (diff v23 v3, v6, v22)

To expose the distribution of labeled features values (0 and 1), we plotted the boxplots of regular_booked and v25 by

diff v23 _v3, v6, v22.
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The shape of regular_booked by Os and 1s is almost same. They have almost same median and ranges
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The shape of regular_booked by Os and 1s is almost same. They have almost same median and ranges

According to the both type of plots, the labeled feature is most likely generated synthetically because there is just small shifting between 0s
and 1s on all plots. However, the number of instance is not balanced. So, that issue can be called as imbalanced data problem since labeled

feature has skewness.



Training Phase

« We got rid of features ('regular booked', 'regular _not booked') which are
correlated with v25.

* We implemented two different approaches by using same Random Forest
classifier, below.

1. Approach#l is sampling the original data to create a new small dataset
which will be represent our original data. In this approach, the both of
dataset’s (original and generated) label ratio will be same. After got the

small dataset, we applied cross_validation and performance evaluation on
dataset, which consists of 1000 instances.

2. Approach#2 is applying just cross_validation on the whole original data.



Training on Original Dataset by Using Random

Forest

Cross Validation Scores:
1. 1. 1. ]

Cross Validation Accuracy: 1.00 (+/- @.01)

———————————————————— Testing Performance----

precision recall fl-score

not booked 1.00 1.00 1.00
booked 0.84 0.00 8.08

avg / total ©.99 1.00 ©.99

acc: ©.996278640197

———————————————————— Training Performance--------------------

precision recall fl-score

not_ booked 1.00 1.00 1.80

booked 1.00 1.00 1.00

avg / total 1.00 1.00 1.00
acc: 1.0
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Training on Original Dataset by Using Random

Forest
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According to our original dataset, we
got the features’ importance in the
plot
The most top 10 contributions are
being made on booking a car by
features, respectively:
* vl1, v6, v20, v15, v22,
diff v23 v3, v3 dayofyear,
v3_dayofweek,v23 dayofyear,
v12, v23_dayofweek
The extracted features related to v3
and v23 are mostly making good
contribution on the label data, v25.



Performance Evaluation - 1

* As we saw the result of approachl and approach?2 in the previous
slide, we have overfitting problem because the label feature’s shape is
imbalanced.

* The precision and recall metric ratios are pretty even bad in
approachl.

 Under these circumstances, actually, we don't need to build a ML
model because the most labels consist of Os (99%). So, if we don't
want to build a ML model, we can label whole new incoming
Instances as 0.

* Therefore, we need to use some special sampling techniques to
overcome skewness data.



Overcoming Imbalanced Data (Skewness)
Problem

There are a few sampling techniques to overcome that problem, below
* Oversampling
e Undersampling
« SMOTE
 ADASYN

We used oversampling and SMOTE. However, we decided to use oversampling technique at the end
of day since it is faster than SMOTE (based on SVM) in terms of performance hardware and time

cost.
* We increased the ration of minority up to 0.7% instead of creating equal ratio classes.

* After solving imbalanced data issue, we applied same approaches again.



Original vs Oversampled Dataset

Correlation and dendrogram of
original dataset

Correlation and dendrogram of
oversampled dataset

If we take a look at their correlation
matrix,

We can see the difference well. Some
feature obviously has more high
correlation each other after
oversampling.

So, clustering of feature also changed
since the initial correlation values were
changed



Training on Small Dataset by Using Random

Forest — Oversampling

Cross Validation Scores:
©.89489489 ©.88188188 ©.88288288]

Cross Validation Accuracy: 0.88 (+/- 0.02)

———————————————————— Testing Performance----

precision recall fl-score

not booked 0.89 0.91 0.90
booked 0.86 0.84 .85

avg / total 0.88 0.88 ©.88

acc: ©.88050160993

———————————————————— Training Performance--------------------

precision recall f1-scaore

not_ booked 8.99 1.00 1.00
booked 1.00 0.99 0.99

avg / total 0.99 0.99 ©.99

acc: @.994259429943

[ ©.88011988 ©.88411588 0.856
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Performance Evaluation - 2

* As we saw the result of approachl in the previous slide, we coped with
overfitting problem.

* Approachl is giving a reasonable result on small sample dataset which
represents whole original data.
* The performance of approach#1 is better than performance of approch#2.

* The precision and recall metric ratios are pretty good even though we tested the rest
of oversampled dataset (1807221 instances) on our model that we built on the small
dataset (10000 instances) in approachl.

e According to cross_validation results of apporch#2 in the previous slide, it
will not reasonable to apply that approach on whole data in 10 Kfold
cross_validation. Because, it is still overfitting although we performed on
whole oversampled data.



Training on Small Dataset by Using Random

Forest — Oversampling

vl

w7

W22
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According to our small dataset generated
over oversampled data, we got the features’
importance in the plot

The most top 10 contributions are being
made on booking a car by features,
respectively:

* v6,v17, diff v23 v3, v23_dayofyear,
v23 day, v15, v16, v23 dayofyear, v11,
v12, v3_dayofweek

The extracted features related to v3 and v23
are mostly making good contribution on the
label data, v25.

v6, price is most important role on building
decision tree after applying oversampling
technique.

revisited_book ad and queried_expired_ad
have the Ilowest contribution level,
respective since the both of them related to
after booking action. It means that they
don’t not have effect on booking.



Conclusions

* Sometimes oversampling is causing an overfitting problem. To
overcome that problem,
* We need to retrieve more dataset.
* SMOTE and ADASYN or another creative sampling technique can be used.

* According to feature importance of Random Forest classifier, we can
make a comment about features’ contribution on labeled features.
* v6 (price of car) has most importance. it means that it is playing important

role to build a tree. So, we can think that v6 has the highest influence on
booking a car.



Conclusions - Business Cases

* Since time based feature has more influence on booking, we may make
some seasonal campaign/discounts distribute coupons%dlscounted oil in X
station) to increase number of booking and engagement.

 Especially, after 5t week of year there is no booking up to 515t week (roughly at the
end of year). We need to focus on that period.

e A simple rule based recommendation engine can be developed with
respect to querying time (v3_day_part) to recommend relevant results to
costumers.

* For example, in early morning, costumers prefer a long rental duration. That

information may be categorized according to the pickup month, as well. We can
recommend costumer a simple booking packages.

* We may segment costumer into different categories (e.g. flex, moderate,
urgent) according to their queries on top of feature diff_v23_v3. It may be
some subscription type.



Future work

* The most analysis were done with respect to booked cars. However, we need to find the root
cause why customer is not booking a car even after querying.

* We can explode the other continuous variables by using CDF to define manually discretization
points. It may affect the contribution and accuracy.

* Feature selection algorithm (forward, backward) and statistical approaching (Chi2, ANOVA) can be
applied to select suitable feature and reduce size of data to overcome computing cost.

* To make a forecasting costumer preferences and costumer tendency, Time series analysis can be

used to decompose data into trend, seasonal patterns over querying time (v3) and pickup date
(v23).

* We can investigate why the customers are querying expired deal.

* To boost the result, maybe we can use another supervised learning classifier, such as Logistic
Regression with multiple input for binary classification.



